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Results are presented from an interferometric study of thermal diffusivity of 
argon over a wide range about the critical point using an equation based on 
the theory of interacting modes. The agreement of experimental and calculated 
thermal diffusivity values for argon provided the authors with a basis for 
calculating the thermal diffusivity of krypton in the vicinity of the critical 
point. 

The goal of the present study is to describe the results of an interferometric inves- 
tigation of the thermal diffusivity of argon in the vicinity of the critical point [i] on 
the basis of an empirical cross-over function, the form of which was determined beforehand 
using the theory of interacting modes [2]. Subsequent refinement and extension [3, 4] have 
produced the following expression for describing the singular portion of the thermal conduc- 
tivity coefficient in a wide range about the critical point [5]: 

A~(p, T) = R K s T  6 ~  p (Cp - -  Cv ) F (% ~), ( 1 ) 

I 11 

where R is a universal constant (R = 1.03 i the interacting mode theory [6], R = 1.038 in 
the renormalization group method [7, 8], whilst the most probable experimental values are 
R = 1.00-1.06 [7]); n is an exponent taking on the value of 0 or 1/2 depending on the form 
of the equation of state used in the calculations; A, B are constants defined by the condi- 
tion of best description of the experimental results. 

We will note briefly that the measurements were performed with a two-beam diffraction 
interferometer, based on an IAB-451Topler device. The measurement circuit realized the 
model of two semi-infinite bodies with a constant thermal flux source on their contact 
boundary, and the nonsteady state thermal conductivity problem was solved. The fundamentals 
of this measurement method were presented in [9]. The authors of [ii] attempted to modify 
the method of measuring the thermal diffusivity coefficient in order to allow simultaneous 
measurements of the thermal conductivity and diffusivity coefficients. For this purpose a 
second semi-infinite body, made of quartz, was used as a reference material. A platinum 
resistance thermometer was placed within a quartz plate in a plane parallel to the plane of 
the heater, at a specific distance from the heat source, in order to determine the charac- 
ter of the thermal flux distribution between the material under study and the reference and 
to calculate the thermal conductivity coefficient. However this model of the measurement 
cell did not provide results on the thermal conductivity coefficient with sufficient accu- 
racy. 

The thermal diffusivity coefficient of argon near the critical point was measured along 
the isotherms T = 188.14, 173.14, 163.15, 153.16, 150.90 K. The calculated error of the 
experimental data for an 0.95 confidence level ranged from 1.0 to 2.5%, with the exception 
of a narrow region of pressures near the critical isochor, where on the isothermes T = 
153.16 and 150.90 K the error rose to 6.5 and 17.0%. The confidence level of the overall 
error contains within itself an unavoidable residue of systemic errors, a random component, 
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Fig. i. Singular portion of argon thermal conduc- 
tivity on isotherms: i) 153.16 K [i]; 2) 163.15 K 
[i]; 3) 153.15 K [i0]; 4) 163.20 K [10]. ~l, W/ 
(m-K); p, amaga. 

and errors related to pressure and temperature references. A correction to the description 
of measurement results on the T = 150.90 K isotherm is difficult because of the high un- 
certainty of the data, which is the reason they were excluded from the analysis. 

Direct measurements of the thermal diffusivity coefficient of argon in a wide range 
about the critical point had not been carried out previously. A comparison of values of 
the singular portion of the thermal conductivity of argon calculated from the results of 
the interferometric study of thermal diffusivity [i] with the equation 

with values obtained from the experimental study of thermal conductivity by the plane layer 
method [10] on isotherms with similar temperature values is shown in Fig. i. 

The thermodynamic functions of argon in calculations with Eq, (3) were defined from 
the equation of state proposed in [ii]. 

The data of [ii] were used to calculate the regular portion of the argon thermal con- 
ductivity: 

~reg(P, T) = (el + a2T + a~T 2) ~ / T  + (aa + asT) P + a6p ~ + a:O s + asp r + a905, ( 4 )  

w h e r e  p i s  t h e  d e n s i t y  i n  amaga u n i t s  (1  amaga = 1 . 7 8 3 4  k g / m a ) ;  l r e g ' 1 0 2 ,  W / ( m ' K ) .  

The coefficients of Eq. (4) are as follows: 

aa = 0.3850.10-a; a2 =0.2949.10-5; a3 = -- 0.2780.10-8; 

ar = 0.3537.10-r a5 = 0.2350- 10-7; a6 = 0.4465.10-7;  

a: = 0.9416.10-1~ as = - -  0,1217.10-12; a9 = i 0 . 2 6 1 0 . 1 0  -15. 

Considering that 

c p  ~ c v  = - -  g r  , (5) 
p \ O T ] o  

we rewrite Eq. (i) in the following form: 

1 2 4 2  



ks T) = R KsTZ ~[ ap ~2 K F('~, o~). (6) 

The final expression for describing the experimental results by Eq. (6) appears as: 

aealc(p, T)- A}'oal~0' T) -}- )~re~P' T) (7) 
pop 

We w i l l  ana lyze  approaches to  c a l c u l a t i o n s  wi th  Eqs. (6) and (7) .  

The O r n s t e i n - C e r n i k e  approximat ion  [12] was used to  de te rmine  the  c o r r e l a t i o n  l e n g t h ,  
y i e l d i n g  

~(p, T) = R~I/,zKB TKr ,  (8) 

where 
f 

V Rt = R6 KB T (9) 

Considering this fact, we transform Eq. (8) to the form 

where 

(o, T) = Re V,Tef7K~, 

NA 9 

R9 = 1.8"10-34ma'N 112 [I0]. 

Shear viscosity values were taken from [13], 
sented in the form of the sum of ideal and excess viscosity components: 

where 

The c o e f f i c i e n t s  of  Eqs. 

A1 

A2=4,3319616024; 

A s =--7,2077044082.10-z; 

A~ = 1,3654183603.10-a; 

A s = - -  1,9171951451.10-6; 

A6----2,3694271369.10-9; 

(p, T) = ~qo (T) + Am (~, T), 

10 

~lo (T) = ~ AiT(i-a), 

4 

An (9, T ) = [ B l ( T - - 3 7 5 )  2 @ C d P + ~ C j O i +  
/'=2 

5 1 5 7 1 

K=2 l~3 

(13) ,  (14) a re  as f o l l o w s :  

= --  88,024177686; B~ = --  1,4208031984.10-3; 

A7=--1,9077838119.10-12; 

A8=9,3733397466.10-16; 

A 9 =--2,54 14017421.10-19; 

Ale = 2,9054209336.10-za; 

(10) 

(11) 

in which the experimental values were pre- 

(12) 

C 1 :  1,2832194248.102; 

C2 =--9,6830693593.10; 

Ca=3,1554546003.102; 

C~=7,2964230042.10~; 

D2---- 1,1906669365.105; 

Da=1,8338168862.105; 

D~=--9,6927431708.10~; 

D5=5,0392874435.105; 

D9=--1,8043239228.103; 

E~=--7,8117857565.!07; 

E~----2,2526440983-108; 

Es=--1,4607732241.10s; 

ET=l,4709499343.10L 

(13) 

(14) 
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Fig. 2. Experimental and calculated thermal 
diffusivity values of argon vs density on 
isotherms: i) 188.14 K [i]; 2) 173.14 K 
[i]; 3) 163.15 K [i]; 4) 153.16 K [i]; 5) 
calculation by Eqs. (6), (7) on above iso- 
therms, a, m2/sec; p, kg/m 3. 
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Dev ia t i on  o f  c a l c u l a t e d  va lues of  
thermal diffusivity coefficient of argon 
from experiment on isotherms: i) 188.14 K; 
2) 173.14 K; 3) 163.15 K; 4) 153.16 K. a - 

acalc'100/a, %. 

The singularity in the shear viscosity in the vicinity of the singular point was 
neglected. The admissibility of such an approach can be justified by the weakness of the 
shear viscosity anomaly, as indicated convincingly by the value of the critical index, which 
takes on values of the order of 0.04 [6, 14, 15, 16]. 

In [17] an analysis of experimental data on the thermal conductivity of carbon monox- 
ide, argon, and methane was used to determine values of the coefficients A and B in Eq. (2). 
These values proved equal to 18.66 and 4.25 respectively. In that study the universality 
of those values was proposed. Despite the fact that subsequent studies of Other materials 
[5] yielded different coefficients, the present study used the values presented above. Re- 
sults of theoretical and experimental studies [16], indicating the existence of a wide range 
of universality in the vicinity of the critical point, became the source of a preference 
for coefficients providing a description for an entire group of substances including the 
object of the present study. 

Critical parameters were taken from [18]: Tcr = 150,725 K; Pcr = 535 kg/m 3. 

The results of the interferometric study of thermal diffusivity of argon on the iso- 
therms T = 188.14, 173.14, 163.15, 153.16 K, as well as calculations performed with Eq. (7) 
are shown in Fig. 2. 
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The mean square uncertainty in calculating thermal diffusivity comprised • The 
character of the deviations is shown in Fig. 3. It is obvious that the main causes of di- 
vergence are the reference errors, especially with respect to pressure, between a, P, T and 
P, v, T data, errors in calculating the isobaric heat capacity from the equation of state, 
as well as inaccuracy in determining the critical temperature. Considering the fact that 
the uncertainty in measuring the isobaric heat capacity usually varies oyer the interval 
3-5% and that the values determined from the equation of state, obtained from P, v, T data 
are no less uncertain, the agreement between the experimental and calculated thermal dif- 
fusivity values for argon can be considered satisfactory. Thus we can state that in the 
vicinity of the critical point the qualitative behavior of the anomalies in thermal conduc- 
tivity and diffusivity can be studied with the aid of the equation of state based on Eq. 
(6). Based on this conclusion, a calculation of the thermal diffusivity of krypton was 
carried out. A review of the literature shows that other studies of the critical dynamics 
of krypton are practically absent. 

The thermal diffusivity of krypton was studied using the equation of state proposed in 
[19]. This equation has a canonical form and describes the thermodynamic surface in the 
temperature range 120-423.15 K at pressures from 0 to 300 MPa, including the vicinity of 
the critical point (Tcr = 209.433 K, Pcr= 908 kg/m 3 [19]). The correctness of the equation 
was tested in [19] using experimental data on isochoric heat capacity [20] and the speed of 
sound [21]. Comparison of calculated and experimental P, V, T data showed that the mean 
deviation comprised 0.058% with maximum deviation not exceeding • A comparison of iso- 
baric and isochoric heat capacities calculated with the equation of state of [19] and with 
results of an experimental study of the speed of sound [21] performed in [19] along the iso- 
therms T = 273.15, 348.15, and 423.15 K at pressures of 1.8-300 MPa led to the following 
results: the maximum deviation for isothermal compressibility and isobaric heat capacity 
comprised • while that for isochoric heat capacity was • 

The results of [22] were used to obtain shear viscosity values. As in [13], in [22] 
viscosity was represented in the form of a sum of ideal and excess components. To calculate 
the ideal component [22] used the following expression: 

lIP =Icr A 
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Fig. 4. Thermal diffusivity of inert gases on critical iso- 
chor: i) Ar [i]; 2)Ar [i0]; 3)Ar [24]; 4)Xe [25]; 5)Xe 
[26]; 6) He-3 [27]; 7) He-4 [28]; 8) He-4 [29]; 9) He-4 [30]; 
i0) He-3 [31]; ii) Kr (present study), a, m2/sec. 
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TIo (T) = A - -  
T2/3 

S 
1 --}- ~ 

T 
(15) 

where q0(T).106, Pa'sec, A = 0.7017, S = 71.93. 

The excess viscosity was calculated with the expression 

Arl (p, T) = (alp + a~p  z + . . .  q -  a,~p") • 

X ( 1 - - } - K  a~p + a~o2 -q- "" -q- a'~P~ ) 
T z , ' 

where 

(16) 

al  = 28,032; a2 = - - 1 1 1 , 1 8 ;  as = 332.46; a~ = - - 4 2 0 . 0 9 ;  

a5 = 275.16; a6 = - - 8 8 . 9 2 2 ;  aT = 11.484; K = 19-106 �9 

The ideal and excess components of the regular portion of the thermal conductivity 
were taken from [23]. 

The thermal diffusivity coefficient of krypton was calculated on the isotherms T = 
209.7, 210.0, 211.0, 212.0, 213.0, 214.0, and 215.0 K at densities of 400-1400 kg/m 3. 

Because of the present lack of experimental results on thermal conductivity and diffus- 
ivity of krypton in the vicinity of the critical point, the value of a was determined by 
analyzing the thermal diffusivity of Ar, Xe, He-3, and He-4 on the critical isochor using 
data from experimental studies of thermal conductivity and diffusivity [i, i0, 24-31]. Re- 
sults of this analysis are shown in Fig. 4, whence it is evident that the values obtained 
for gases such as Ar, Xe, Kr are quite far removed from the thermal diffusivity values of 
He-3 and He-4, which is probably due to the quantum nature of the latter substances. It 
should be added that the results of the Ar, Xe, Kr studies are consistent not only for use 
of various techniques (classical, Rayleigh scattering, interferometry, interacting mode 
theory), but also for the different substances, while the He-3 and He-4 results are some- 
what contradictory. 

NOTATION 

P, pressure, MPa; p, density, kg/m3; T, temperature, K; ~, molecular weight, kg/mol; 
kT, isothermal compressibility, I/Pa; cv, isochoric specific heat, J/(kg.K); cp, isobaric 
specific heat, J/(kg'K); NA, Avogadro's number, i/mol; KB, Boltzmann's constant, J/K; R$, 
Debye damping length, m; k, thermal conductivity, W/(m'K); Ak, singular thermal conductiv- 
ity, W/(m'K); kreg, regular thermal conductivity, W/(m'K); a, thermal diffusivity, m2"sec; 
q, shear viscosity, Pa.sec; q0, ideal component of shear viscosity, Pa'sec; Aq, excess com- 
ponent of shear viscosity, Pa-sec; $, correlation length, m. 
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IMPREGNATING A HEATED FILLER WITH A NON-NEWTONIAN 

FLUID 

L. Ya. Kosachevskii', E. A. Kosachevskaya, 
and L. S. Syui 

UDC 532.546 

An approximate parametric method is used to solve the planar temperature-depen- 
dent problem of continuously impregnating a heated filler with a fluid that has 
a power-law non-Newtonian viscosity. 

Many composite materials are made by impregnating porous materials (fillers) with vari- 
ous fluids (binders), which than are polymerized or crystallized into a solid. The most 
convenient method to accelerate this process is to preheat the filler, which significantly 
reduces the viscosity of the binder during the impregnation. Here the fluid is held at a 
high temperature for only a short time, with no danger of thermal decomposition. An exact 
self-similar solution has been obtained [i] to the problem of using an ordinary viscous 
fluid for continuously impregnating a heated layer, which is drawn through a heated chamber. 
Because binders used in practice (resins and polymer melts) have more complex rheological 
properties, whose permeability differs from Darcy's law, the problem has been generalized 
[2, 3] to viscoplastic binders. The permeability is described by a generalized Darcy's law 
[4] for a linear temperature dependence of the rheological properties. An approximate para- 
metric method was suggested to solve this (nonself-similar) problem. The method uses a 
cubic trinomial for the temperature profile. Here we examine an analogous problem of a 
power filtration law [5] for arbitrary temperature-dependence of the non-Newtonian viscosity 
and for more general heat-transfer boundary conditions at the surface of the filler. We 
also use a parametric method, but with a different representation of the temperature pro- 
file, which allows us to obtain the solution in a compact form suitable for numerical compu- 
tations. The problem is solved analytically in the particular cases of small and large pres- 
sure gradients, and also for weak temperature dependence of the non-Newtonian viscosity. 
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